
Randomized Batch Scheduling with Minimum

Configurations for Switches and Routers
Zhen Zhou and Mounir Hamdi
Department of Computer Science

Hong Kong University of Science & Technology
Clear Water Bay, Hong Kong

Email: {cszz, hamdi}@cs.ust.hk

Abstract-As the technology advances, the speed and sizes of
input-queued internet switches increase dramatically. The design
of the switch scheduler becomes a primary challenge, because the
time interval for making scheduling decisions becomes very small.
One method to resolve this problem is to reduce the scheduling
frequency for a batch of packets and pipeline the switching tasks.
Such method is called batch scheduling.

Since computing and setting up each switch configuration
incurs a notable cost, it is preferred to have minimum number of
configurations for every batch. We study in this paper approxima-
tion schemes for batch scheduling with minimum configurations.
We propose three algorithms together with their (expected)
approximation ratios. The NAIVE ROUND ROBIN algorithm runs
in O(N2) time and has the worst possible approximation ratio.
We try to improve the approximation ratio by randomization.
The RANDOMIZED ROUND ROBIN algorithm has an expected
approximation ratio of O(ln N). In the same fashion, we propose
the BARELY RANDOM ROUND ROBIN algorithm that uses less
random bits at a cost of worse approximation ratio. Finally, our
simulation results indicate that a fabric speedup of 2 is sufficient
for our batch scheduling algorithms to provide quality of service
(QoS).

I. INTRODUCTION

Today's internet relies very much on routing and switch-
ing technologies. High-speed core routers use virtual output
queues for storing fixed size packets, and a crossbar fabric
or an optical fabric for switching packets. At each time slot,
a centralized scheduler finds a matching between the inputs
and outputs. Then the fabric is configured according to the
matching in order to dispatch packets from the inputs to the
outputs. Researchers studied extensively efficient algorithms
for finding this matching. However, the scheduling algorithms
do not scale as fast as router hardware. For instance, with line
rates of 40 Gbps (e.g., Cisco's OC768) and 64-byte cells, an
algorithm would have to compute a matching every 12.8 ns,
while the current highest-capacity commercially available cen-
tralized scheduler takes about 50 ns per matching. In optical
switches, the overhead comes from not only the computation
but also the reconfiguration delays [2], [3], [4]. One possible
solution is batch scheduling, in which we reduce the rate of
finding matchings and pipeline the switching tasks.

In batch scheduling, a switch works in a three-phase cycle.
The switch accumulates packets in a batch in the first phase.
Then it does the scheduling task in the second phase and
switches the packets to output lines in the third phase. In

such a manner, pipelining is allowed as shown in Fig. 1. We
are guaranteed to have 100% throughput and the worst case
switching delay is bounded by the sum of the time spent in the
three phases, given that packets that arrive in the first phase are
transmitted after the third phase. It is also critical that the third
phase never takes longer than the time of the accumulating
phase, because otherwise the switch is not stable.

Switch reconfguration 1j Packet dispatching

Transmitting

3Accumulating
T 2T 3 T Time

Fig. 1. Three phases of batch scheduling and pipelining.

Since each time it requires a considerable amount of time
to compute matchings and reconfigure fabrics (especially in
the optical case), it is always preferred to produce minimum
number of configurations for each batch. In order to success-
fully dispatch all packets in a batch, fabric speedup is required
both to cover the reconfiguration overhead and to compensate
for empty slots left by the scheduling algorithm.

In this paper, we study and propose batch scheduling
algorithms that produce minimum number of configurations
and try to minimize the scheduling makespan at the same
time. We name it MBS (Minimum Batch Scheduling) problem
for ease of discussion. This problem is proved to be NP-
complete by Gopal and Wong [1]. As 100% throughput and
bounded delay have been ensured by pipelining method (with
speedup), we may now focus on other design issues for MBS
algorithms, such as time complexity and simplicity (due to the
hardware limitations). Another major concern is the efficiency
ofMBS algorithms. Because we are minimizing the number of
configurations, we are expected to see a lot of empty time slots
for each matching. The smaller the makespan is, the less time
slots are wasted, and the more efficient the algorithm is. We
study this issue in terms of the approximation ratios, where the
algorithms' makespan is compared against the optimal one.

The main contribution of this paper is outlined as follows:
After formally defining the MBS problem in Section II,

1-4244-1 206-4/07/$25.00 ©2007 IEEE

2

we first exploit its approximation ratio against an optimal
algorithm in Section III-A. The upper bound of the approxi-
mation ratio is shown to be N, given an N x N switch. In
section III-B, we propose a deterministic algorithm NAIVE
ROUND ROBIN that runs in O(N2) time. It is the origin of
two randomized algorithms. The first randomized algorithm
RANDOMIZED ROUND ROBIN uses N logN random bits. It
has expected approximation ratio of InN + 1. The second
randomized algorithm BARELY RANDOM ROUND ROBIN has
a worse approximation ratio by using only log2 h random
bits. Because minimum number of configurations is produced,
approximation ratios for our MBS algorithms imply a speedup
factor (defined in (1)) of switching fabrics. In Section IV, our
simulation results show that a speedup of 2 will be sufficient
for fabrics in batch scheduling to provide quality of service
(QoS) when any of our algorithms is employed.

II. PRELIMINARIES

In an N-input-N-output switch, time is slotted and we
assume traffic is admissible, so that there is at most one fixed-
size packet received from any input port or dispatched to any
output port in one time slot. In batch scheduling, packets are
first accumulated for T time slots, where T is the fixed batch
length. We then obtain a traffic matrix (i.e., batch)

D = [di,j]NXxN di,i > °,

in which any row sum and column sum should not exceed the
accumulated port capacity under an admissible traffic. That is,

Vi,j, Zcdi,j <T and Zdi,j <T, (T>N).

Then batch scheduling algorithms are responsible to find
switching configurations between inputs and outputs in order
to deliver the accumulated traffic matrix to the output ports. It
is not hard to see that the minimum number of configurations
needed is N (which also has been formally proved in [1]).
Therefore, the goal of the MBS algorithm is to minimize the
makespan (i.e., the total scheduled time) of transmitting the
traffic within exactly N configurations.

Each configuration can be represented as a (partial) permu-
tation matrix P = [pi,j]NxN which is a 0-1 matrix with at
most one "1" on each row or column. An "1" on the ith row
jth column indicates that input i shall connect with output
j in the current switching. An MBS algorithm produces N
configurations Pk (1 < k < N), each lasts for wk time
slots, that covers the traffic matrix. We can express our MBS
problem as follows.

objective: min Lk=1 wk

subject to D < WkPk 1 < k < N

Note that it is generally difficult to determine the set {Pk}
from (J)N) candidates. Hence it is not a Linear Programming
problem. Once the set {Pk } is found, the corresponding
weights are merely the largest entries covered in every con-

figuration.

Each time the switch computes and starts up a new switch-
ing configuration, it introduces an overhead 6. Let N, denotes
the number of configurations for batch scheduling. Assuming
that T is larger than N,j, in order to transmit all packets in
T time slots, speedup is required both to cover the overhead
and to compensate for empty slots left by the scheduling
algorithm. Since N,6 time slots for computing the matching
and reconfiguring the switch is substantial, only T- N6 time
slots are available for actually transmitting packets. Therefore,
the speedup required by the schedule is

N

s-=k=lWk
T-Nc6' (1)

Our batch scheduling algorithms with minimum configuration
make the denominator a fixed value, i.e., T -Nc6 = T- N.
Hence, minimizing the speedup is the same as minimizing the
makespan.

Related work. Batch scheduling with minimum config-
urations arises in the context of Satellite Switched Time
Division Multiple Access (SS/TDMA) systems. Gopal and
Wong proved its NP-completeness and introduced an o(N4)
time algorithm in [1]. Towles and Dally improved the time
complexity to o(N3.5) by their algorithm MIN in [7]. Both of
their algorithms are based on maximal matching subroutines,
which forces the overall algorithms to run for at least o(N3.5)
time [5], [6]. Neither of them provides explicit analysis of the
approximation ratios of their algorithms. An algorithm based
on divide-and-conquer paradigm was introduced by Zhou,
Li and Hamdi [8] that achieves asymptotically the fastest
possible time complexity of O(N2). To the best of the authors'
knowledge, no randomized algorithm was introduced for this
problem.

III. APPROXIMATION MB S ALGORITHMS
Let WA(D) denote the makespan incurred by a deter-

ministic algorithm A scheduling the batch D. Similarly, let
WOPT(D) denote the makespan by the optimal algorithm
OPT. The approximation ratio a is defined to be the maximum
ratio between the makespan of A and the makespan of OPT
on the same batch for all batches, i.e.,

a < WA (D) VD

E[WA, (D)] will substitute for WA(D) in the above definition,
if A' is a randomized algorithm, and the expectation is taken
over all random choices made by A'.

A. Upper Bound of the Approximation Ratios

We prove the following theorem on the upper bound of the
approximation ratio of any MBS algorithm.

Theorem 1: The approximation ratio of any deterministic
MBS algorithm is no more than N.

Proof: Given any batch D = [di,j]NxN, suppose any
MBS algorithm A produces weights W1, W2, ..., WN. So the
makespan is WA(D) = NwE .

Notice that wk is actually the amount of the largest entry
in configuration Pk. Therefore, wk = dij for some i and j.

Let D' = [WkNXN be the batch that contains only the largest
entries of each configuration. The optimal off-line algorithm
OPT has to at least cover D'. In the best case, OPT's total
makespan for D is

WOPT(D) > WOPT(D') = max{wk}.
k

That is, OPT covers D by only one configuration with weight
maxk{wk} in the best case. The approximation ratio

a WA(D) k=1 Wk <N.
WOPT (D) -maXk {Wk }

As this is the best case construction, we conclude that in
general the approximation ratio a is at most N. U

B. Naive Round Robin Algorithm
Before we proceed to the description of the algorithms, we

shall define one helpful notation. Let P = [pi,j]NxN be an
arbitrary permutation matrix. We define P' = P xDx if and
only ifpj= Pi,(j+x) mod N for all p'j C P'. In other words,
operator D defines the feedback right-shift on all entries of P
for x positions. We say two permutation matrices P and P' are
unrelated if and only if P' :t P xDx for any x. Otherwise they
are called related. In fact, "unrelated" (or "relate") relation
is symmetric. If we cannot arrive to P' by right-shifting the
entries in P, neither can we get P by right-shifting the entries
in P'.
Now we can introduce a deterministic algorithm called

NAIVE ROUND ROBIN (NRR), which is the origin of our
randomized MBS algorithms.

Algorithm NRR(D)
Input:
N x N non-negative integer matrix D.

Output:
A set of permutation matrices P., . , PN and correspond-

ing non-negative integer weights W,l , WN.
Procedure:

1) Initialize P1 to be a diagonal (permutation) matrix.
2) SetPk= P1 k,for1<k<N.
3) Find the largest entry in D that covered by Pk and set

it to be Wk, and output

Theorem 2: The approximation ratio of the NAIVE ROUND
ROBIN algorithm is N.

Proof: We prove this ratio by constructing an adversarial
traffic matrix Dadv. In Dadv, dj,2j-1 = T for 1 <j < N+1

d[NI21+j,2j = T for 1 j < N/2, and all others entries are
zero. An example 5 x 5 matrix is shown below.

T 0 0 0 0
0 0 T 0 0

Dadv 0 0 0 0 T
0 T 0 0 0
0 0 0 T 0

Dadv is clearly admissible as its row sums and column
sums are no larger than T. NRR will produce N non-zero

configurations for Dadv. Each has weight T, while the optimal
algorithm will produce only one configuration of weight T. So
the approximation ratio of NRR is

WNRR(Dadv)
aNRR >W = NTIT = N.

WOPT (Dadv)

Observe that the reason why NRR has a poor approximation
ratio is because it uses only N possible permutation matrices.
If we denote Jb be the set of all possible permutation matrices,
b = N!. In general, if an algorithm only utilizes a small set X
of different permutation matrices (0b < N!), one can always
find an adversary input that forces the algorithm to be N-
approximate. For example, the adversary input could be T. P
for any P , b. We actually applied this idea in the proof of
NRR's approximation ratio above.

C. Randomized Round Robin Algorithm
After understanding the reason of NRR's shortcoming,

we may now try to improve the performance. The idea is
randomization. Instead of fixing one initial permutation matrix,
we randomly choose one from the set D. Not surprisingly,
RANDOMIZED ROUND ROBIN (RandRR) is the same as NRR
except for the first step.

Algorithm RandRR(D)
1) Randomly choose P1 from the set 4 of all possible

permutation matrices.
2) Set Pk = P1 (D k, for I < k < N.
3) Find the largest entry in D that covered by Pk and set

it to be Wk.
4) Output.

Because RandRR is a randomized algorithm, we shall
examine its expected approximation ratio. In our analysis, we
assume that RandRR chooses an initial permutation from Jb
according to a uniform distribution. Note that it is nothing to
do with the input traffic distribution.

Given any N x N batch b, denote wo (b),. ..,w(b)
the weights incurred by the optimal algorithm OPT; and
wl(b),..., wR (b) the weights incurred by RandRR. Without
loss of generality, we assume that the weights are arranged
in non-increasing order for both OPT and RandRR. That is,
W1o > wo0 > ..> Wo and W1R > W2R > ..> WR. Denote
W°(b) and WR(b) the makespan of the two algorithms
respectively. Let L(b) be a non-increasing list of all N2 entries
in b, for the sake of our analysis. The i-th largest entry in
batch b is denoted as Li(b). In our analysis, we always assume
for any input batch. Thus the input b in all notations will be
omitted unless otherwise specified.

Given the above setting, we first observe the following
proposition.

Proposition 1: wi > L(i-l)N+l for any 1 < i < N,
regardless the scheduling algorithm.

Proof: Suppose there exists a certain k such that
Wk < L(k 1)N±1 Since each configuration contains exactly

N entries, k -1 configurations with weights wj,...,wA
can cover at most N(k -1) entries, There are two cases

L(k-1)N+1 is covered by any of the k -1 configuratic
the configuration with weight wk must cover some entry
that appears before L(k-1)N+1 in the list. Thus wk > L,
L(k-1)N+1 leads to a contradiction. Otherwise, L(kl)A
must be covered by the configuration with weight wk. It le
us to a contradiction too.

In the most optimistic case where W = wi is minimiz
each configuration i has weight wi = L(i-l)N+l and conta

L(i-l)N+l up to LiN. Therefore, no matter what schedul
algorithm we employ, wi > L(i-l)N+l holds.

The next lemma is going to bound the expected weights
RandRR by the weights of OPT.
Lemma 1: E[wi] <1 Y'= w for any 1 < i <

where E[wR] is the expected value of the ith largest wei
incurred by RandRR.

Proof: By Proposition 1, we have wR > L(i-)N+l± T
means WR must appear within the range [L1, L(j- 1)N+±1 in
L. As we assume the uniform distribution of its occurrer

it can be estimated to be the arithmetic mean of the rai

substracting the previously determined weights. That is,

E[wfR]
1

(i l)N±l
iN -i- N+2 Lk

<

(i -1)N+1I

(i-1)N+1

k=l

i-i

E k

k=l

Lk

(i-)N
I

1(NL1 + NLN+1 +
+NL(i_ l)N + L(i-)N+±)

-(Li + LN+1 + L+ (i-l)N+1)-

Since by Proposition 1, w4 > L(k-1)N+1, we conclude t
(2) can be further derived into

E[wf'] < . w.

klk=1

We then prove the expected approximation ratio of Rand-
in the following theorem.

Theorem 3: The expected approximation ratio of Rand
is InN + 1.

Proof: By the definition of the makespan and the lineai
of the expectation, E[WR] = 1 E[wi]. This can

further expressed by Lemma 1 so that

where Hi is the Harmonic number. Therefore,M-1
,. If
ns,

LX
c >

±+1
ads

.ed,
iins
Ling

f

N

E[WR] < HN
i=l

HNW0.

Because RandRR produces exactly N configurations, its
expected scheduling cost with respect to any input batch b
is E[CRandRR(b)] = E[WR(b)] + N&. Compare it with the
optimal scheduling cost COPT (b) = WO + N6, we obtain the
expected approximation ratio for RandRR.

aexpected
E[CRandRR(b)] < HNW + N6 < HN.
COPT(b)WON

Because InN < HN < InN + 1, it follows that the expected

N,
approximation ratio of RandRR is InN + 1.

Nght By randomization, we have achieved a big step in approx-
ht imation ratio from N to expected InN + 1. Besides, the

algorithm is fast. The time complexity of RandRR is O(N2).
hat This is because for each configuration Pk, we spend O(N)
list for shifting from Pk-1 to Pk, and O(N) time for determining
ice, its weight. In addition, O(N2) is the best possible asymptotic
nge time complexity for the MBS algorithms, because any input

batch has size 9(N2).

D. Barely Random Round Robin

The major drawback of RandRR is that it requires an

external source of randomness, as large as N!; because it
will choose a permutation matrix uniformly at random from
the set Jb at each run. This may cause some difficulty in
implementation. This difficulty can also be measured in terms
of random bits. The larger the sample space is, the more

random bits will be used to control the random draw. RandRR
uses 0(N log N) random bits for N! samples, since log2 N!

(2) O(N log N) .

As a matter of fact, we can trade off between the number of
the random bits and the approximation ratio. A barely random

that algorithm is an algorithm that uses limited (often constant)
number of random bits. To modify our RANDOMIZED ROUND
ROBIN to be a barely random algorithm, we first fix a small

(3) set H of the permutation matrices. Note that the permutation
matrices in H are pairwise unrelated. Otherwise, we could
keep one of the related permutations and obtain a smaller set

* H. The BARELY RANDOM ROUND ROBIN (BRRR) works as

[RR follows.

[RR

rity
be

E[WR] < E (E

N N

=X(HN -Hi- 1)wo° < E HNwY

i=l i=l

Algorithm BRRR(D)
1) Randomly choose P1 from the set H.
2) SetPk= P1 k,forl<k<N.
3) Find the largest entry in D that covered by Pk and set

it to be Wk.
4) Output.

Again the difference lies in the first step of the procedure
only. Therefore, the time complexity of BRRR is O(N2) too.
Let h = H be the size of the sample space of BRRR. The
number of random bits used by BRRR is log2 h, which is

much less than that of RandRR. However, the performance is
also downgraded. This is because Lemma 1 may not hold any
more. When fewer permutations are used, E[wi] can not be
estimated by the arithmetic mean. Instead, some adversarial
input may force wR take large values as it can not average
the worst case by full randomization. It is not hard to see that
when h = 1, BRRR is actually NRR; when h = N!, BRRR is
actually RandRR. Intuitively BRRR performs better than NRR
but worse than RandRR (because of less random bits) in terms
of the approximation ratio. Therefore, we conjecture that the
approximation ratio of BRRR is a function of h that lies in
the range of [InN + 1, N].

IV. EXPERIMENTS AND REMARKS

The purpose of this simulation is to evaluate the actual
performance of our MBS algorithms in terms of their ap-
proximation ratios. Notice that because we do not have any
idea of the reconfiguration delay 6, the ratio of the makespans
WALG/WOPT are measured instead of the actual approxima-
tion ratio. In fact, WALG/WOPT is a loose upper bound for
the approximation ratio. Though it is not very accurate, it does
provide some useful information.

In our first experiment, we fix the size of the switch to be
N = 128. The input traffic matrices have random entries. The
input traffic is defined as follows: Packets arrive at the inputs
according to the independent and identical distributed (i.i.d.)
Bernoulli processes. The traffic is admissible with respect to
the batch length T. To test for different value of T, we made
it also random and T > N. We depict the statistics of 104
runs of the three algorithms in Fig. 2. The average of these
104 sample executions is about 1.70, with standard deviation
around 0.05, for all three algorithms. All the outputs vary
within the range of 1.60 to 1.85, and form approximately a
Gaussian distribution.

In Fig. 2, we observe that the performance of the three
algorithms are almost identical. This is because on a fixed
input, any randomized algorithm behaves exactly as a de-
terministic algorithm after making its random decision. On
some inputs, the randomized algorithm will perform worse
than the deterministic one, and better on the other inputs. The
performance will adjust itself on a large number of random
inputs. The figure merely portraits our expectation.
Our second experiment tests how BRRR performs on var-

ious sizes of the set H of initial permutations. We fixed the
size of the switch N = 128, and h = IHI varies from 1 to
128. The average approximation ratio with respect to each h
is shown in Fig. 2. We find that BRRR is not sensitive to the
change of h, when the inputs are random. It is due to the same
reason described in the previous paragraph.

Finally, we tested our algorithms with respect to different
switch sizes. Each algorithm will execute on 103 uniformly
random inputs for each switch size. Although the sizes of
the switch are not necessarily exponents of 2, we choose
it this way to observe the trend more easily. The statistical
properties are summarized in Table I. As the size increases,
the performance of the three algorithms becomes stable. The

TABLE I

ALGORITHMS' STATISTICAL PERFORMANCE OF WALG WOPT ON

VARIOUS SWITCH SIZES (OVER 103 UNIFORMLY RANDOM INPUTS)

Average Standard Deviation
N NRR RandRR BRRR NRR RandRR BRRR

2 1 1 1 0 0 0
4 1.1904 1.1938 1.1924 0.1454 0.1501 0.1476
8 1.3442 1.3458 1.3429 0.1276 0.1267 0.1255

16 1.4599 1.4599 1.4604 0.0940 0.0939 0.0942
32 1.5381 1.5381 1.5381 0.0694 0.0694 0.0694
64 1.6663 1.6663 1.6663 0.0489 0.0489 0.0489
128 1.6916 1.6916 1.6916 0.0362 0.0362 0.0362
256 1.7547 1.7547 1.7547 0.0252 0.0252 0.0252
512 1.8091 1.8091 1.8091 0.0183 0.0183 0.0183

TABLE II
SUMMARY OF MBS ALGORITHMS

Time (Expected) A.R. T# Random Bits

NRR O(N2) N Deterministic

RandRR O(N2) lnN+ 1 0(N log N)

BRRR O(N2) [lnN + 1, N] log2 h

average tends to be the same and the standard deviation de-
creases. We notice that WALG/WOPT of the three algorithms
increase proportional to InN but are much less than InN.
This is because the larger the switch size, the more empty
slots it would produce. When the input traffic is also uniform,
Lemma 1 gives excellent estimation of the expected weights
of the three algorithms. Thus the arguments in the proof of
Theorem 3 also describe the trend we observed in Table I. We
may also observe that WALGIWOPT do not exceed 2, which
implies that a speedup of 2 is sufficient in general.

V. CONCLUSION

We conclude this paper by summarizing the results in
Table II. In addition to the theoretical performance bounds,
we also provide the simulation results. These results actually
suggest that the approximation ratio study underestimates the
algorithms' performance under the randomly generated traffic.

Here in this research, we only study the case when the
number of configurations N, = N. It is interesting to study
the tradeoff between the number of configurations and the
performance. It will also be important to understand whether
preemption would lead to better approximation ratios in theory
and in practice.

REFERENCES

[1] I. S. Gopal and C. K. Wong. Minimizing the number of switchings in
an SS/TDMA system. IEEE Transactions on Communications, vol. 33,
pp. 497 - 501, 1985.

[2] P. B. Chu, S. S. Lee and S. Park. MEMS: The Path to Large Optical
Crossconnects IEEE Communications Magazine, vol. 40, Issue 3, pp.
80-87, Mar. 2002.

[3] J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H. F. Wong, and
P. W. Barth. A compact, scalable cross-connect switch using total
internal reflection due to thermally-generated bubbles. In Proceedings
of Lasers and Electro-Optics Society Annual Meeting, pp. 169 - 170,
1998.

1.741
2000-

1800 174

1600-
11.739

1400 InC-

c 1200 - 1.738

1000~~~~~~~~~~~~~~~~~~~~
1 .737

=800 -Q

600 -i 1.736-

1.6 1.65 1.7 1.75 1.8 1.85 0 20 40 60 80 100 120
Walg/Wopt (N=128). lef=NRR; middle=RandRR; right=BRRR Size of barely random basis, 1 < ISI < N, (N=128)

Fig. 2. Statistical distribution of WALGIWOPT (left) and Average WBRRRIWOPT V.S. IHI (right) on a 128 x 128 switch.

[4] 0. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia. GaAs-
based microelectromechanical waveguide switches. In Proceeding of
IEEEILEOS International Conference on Optical MEMS, pp. 41 - 42,
2000.

[5] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal of Computing, vol. 2(4),
pp. 225 - 231, 1973

[6] H. N. Gabow. Data structures for weighted matching and nearest
common ancestors with linking. In First Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 434 - 443, 1990.

[7] B. Towles and W. J. Dally. Guaranteed scheduling for switches
with configuration overhead. IEEEIACM Transactions on Networking,
vol. 11, pp. 835 - 847, 2003.

[8] Z. Zhou, X. Li, and M. Hamdi. Fast scheduling for optical packet
switches with minimum configurations. In Proceedings of IEEE Work-
shop on High Performance Switching and Routing (HPSR05). Hong
Kong, May 2005.

